Deep Gaussian Processes for Regression using Approximate Expectation Propagation
نویسندگان
چکیده
Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of Gaussian processes (GPs) and are formally equivalent to neural networks with multiple, infinitely wide hidden layers. DGPs are nonparametric probabilistic models and as such are arguably more flexible, have a greater capacity to generalise, and provide better calibrated uncertainty estimates than alternative deep models. This paper develops a new approximate Bayesian learning scheme that enables DGPs to be applied to a range of medium to large scale regression problems for the first time. The new method uses an approximate Expectation Propagation procedure and a novel and efficient extension of the probabilistic backpropagation algorithm for learning. We evaluate the new method for non-linear regression on eleven real-world datasets, showing that it always outperforms GP regression and is almost always better than state-of-the-art deterministic and sampling-based approximate inference methods for Bayesian neural networks. As a by-product, this work provides a comprehensive analysis of six approximate Bayesian methods for training neural networks.
منابع مشابه
Gaussian Process Regression with Censored Data Using Expectation Propagation
Censoring is a typical problem of data gathering and recording. Specialized techniques are needed to deal with censored (regression) data. Gaussian processes are Bayesian nonparametric models that provide state-of-the-art performance in regression tasks. In this paper we propose an extension of Gaussian process regression models to data in which some observations are subject to censoring. Since...
متن کاملDeep Gaussian Processes for Regression using Approximate Expectation Propagation: Supplementary material
1. Approximate predictive distribution Given the approximate posterior and a new test input x∗, we wish to make a prediction about the test output y∗. That is to find p(y∗|x∗,X,Y) ≈ ∫ du p(y∗|x∗,u) q(u|X,Y). This predictive distribution is not analytically tractable, but fortunately, we can approximate it by a Gaussian in a similar fashion to the method described in the main text. That is, a si...
متن کاملSparse-posterior Gaussian Processes for general likelihoods
Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...
متن کاملSparse-posterior Gaussian Processes for general likelihoods
Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...
متن کاملVariable sigma Gaussian processes: An expectation propagation perspective
Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. The most advanced of these, the variable-sigma GP (VS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016